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We study a framework for robust mechanism design that can accommodate

various degrees of robustness with respect to agents’ beliefs, and which includes

both the belief-free and Bayesian settings as special cases. For general belief re-

strictions, we characterize the set of incentive compatible direct mechanisms in

general environments with interdependent values. The necessary conditions that

we identify, based on a first-order approach, provide a unified view of several

known results, as well as novel ones, including a robust version of the revenue

equivalence theorem that holds under a notion of generalized independence that

also applies to non-Bayesian settings. Our main characterizations inform the de-

sign of belief-based terms, in pursuit of various objectives in mechanism design,

including attaining incentive compatibility in environments that violate standard

single-crossing and monotonicity conditions. We discuss several implications of

these results. For instance, we show that, under weak conditions on the belief re-

strictions, any allocation rule can be implemented, but full rent extraction need not

follow. Information rents are generally possible, and they decrease monotonically

as the robustness requirements are weakened.
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1. INTRODUCTION

Mechanism design has been one of the most successful areas within economic theory. It

has deepened our understanding of incentives under private information, providing several

theoretical and methodological advances on the way. More broadly, it has had a dramatic

impact on the design and understanding of real world mechanisms and institutions. Yet, the

classical approach also features some important limitations, particularly due to the strong

assumptions on agents’ beliefs that are implicit in standard models, and the key role that

they play in several results. The ‘Full Surplus Extraction’ results of Crémer and McLean

(1985, 1988) and McAfee and Reny (1992) are notorious examples of findings that “[...]

cast doubt on the value of the current mechanism design paradigm as a model of institu-

tional design” (McAfee and Reny (1992), p.400). But several other results, both in game

theory and mechanism design, have contributed to motivating Wilson (1987)’s famous call

for a “[...] repeated weakening of common knowledge assumptions [...]” in the theory.

A large literature has studied the implications of different relaxations of common knowl-

edge assumptions, and various models of robust mechanism design have been explored.

The belief-free approach, spurred by Bergemann and Morris (2005, 2009a,b), has been es-

pecially influential. In essence, it requires mechanisms to ‘perform well’, regarldess of the

agents’ beliefs about each other. But this approach, which voids beliefs of any role, is per-

haps too extreme or at least sometimes unnecessarily demanding: in many settings, it may

be the case that the designer does possess some information about agents’ beliefs, albeit not

necessarily to the extent that is entailed by the standard Bayesian paradigm. Accounting for

this possibility, and providing a systematic analysis of the implications of various degrees

of robustness about agents’ beliefs, is key to fulfill the ultimate objective of the Wilson

doctrine, “[...] to conduct useful analyses of practical problems [...]” (Wilson, 1987).

In this paper we study a framework that can accommodate various degrees of robust-

ness with respect to agents’ beliefs. This is modeled by means of belief restrictions,

B = ((Bθi)θi∈Θi
)i∈I , where each type θi ∈ Θi of an agent is endowed with a set of be-

liefs about others’ types, Bθi ⊆ ∆(Θ−i), that the designer regards as possible. This way,

we accommodate as special cases both the classical Bayesian framework (where all such

sets are singletons), and the belief-free setting (where Bθi =∆(Θ−i) for all i and θi ∈Θi).

Crucially, we also accommodate the intermediate cases where the designer can rely on
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some, but not full, information about agents’ beliefs. Intuitively, the smaller the beliefs

sets, the more the designer knows (or is willing to assume) about agents’ beliefs. 1 Within

these settings, and for general environments with quasilinear utilities, we characterize the

set of B-incentive compatible (B-IC) direct mechanisms: that is, the set of transfers and

allocation rules in which truthful revelation is a mutual best-response, for all types and for

all beliefs in the belief restrictions. We then discuss several implications of these results.

We start our analysis with the introduction of the canonical transfers. These are the

transfers which are pinned down by the first-order conditions that are necessary for truthful

revelation to be an ex-post equilibrium of the direct mechanism. Thus, they only depend

on the ex-post payoffs (and, hence, on agents’ preferences and the allocation rule). Under

standard single-crossing conditions, the ex-post payoff functions induced by these transfers

are concave at each truthful profile if and only if the allocation rule is increasing, in which

case truthful revelation is an ex-post equilibrium, and incentive compatibility is attained in

a belief-free sense (ex-post incentive compatibility, ep-IC). But if either single-crossing or

monotonicity fail, then the second-order conditions are not met, and ep-IC is not possible.

In those cases, suitable modifications of the transfers may restore incentive compatibil-

ity, but only by relying on information about beliefs. Whether this is possible, or how, it

depends on the information that is available to the designer.

For any B = ((Bθi)θi∈Θi
)i∈I , suppose that a B-IC transfer scheme can be obtained via

an additive modification of the canonical transfers. Since, by construction, the canonical

transfers ensure that truthful revelation satisfies the first-order conditions (F.O.C.) in the

ex-post sense, so they do for all beliefs in B. Hence, if an additive modification of the

canonical transfers yields a B-IC transfer scheme, then it must be that the added term also

satisfies the F.O.C., for all beliefs in the belief sets. Theorem 1, in Section 3, shows that

this intuition is general: for any belief-restrictions B, any B-IC transfer can be written as

1The belief restrictions framework was first introduced in Ollár and Penta (2017), to study how beliefs can be

used to attain full implementation, taking incentive compatibility as given (see Ollár and Penta (2022, 2023) for

some special cases). Here, in contrast, we tackle the more fundamental question of how beliefs can be used for the

very establishment of incentive compatibility, including when single-crossing or monotonicity conditions fail. A

related exercise is pursued by Carvajal and Ely (2013), albeit in a standard Bayesian setting. Related approaches

to beliefs instead include Jehiel et al. (2012), He and Li (2022), Lopomo et al. (2021, 2022), Gagnon-Bartsch et al.

(2021) and Gagnon-Bartsch and Rosato (2023). The related literature is discussed in Section 6.



4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

ti(m) = t∗i (m) + βi(m), where (letting m ∈ M = Θ denote a generic message profile in

the direct mechanism) t∗i :M → R denotes the canonical transfers, and βi :M → R is a

belief-based term that satisfies Ebθi

[
∂βi
∂mi

(θi, θ−i)
]
= 0 for all θi and bθi ∈Bθi .

The bite of the latter condition depends on the richness of the belief sets. It has several

direct implications, which provide both a unified view on known results, as well as novel

ones. One of the new results is a robust version of the revenue equivalence theorem, which

we obtain under a notion of generalized independence that also applies to non-Bayesian

settings (Corollary 3). Specifically, if for each agent i, the intersection
⋂

θi∈Θi
Bθi is non-

empty, then B-IC is possible if and only if it is attained by the canonical transfers, and

equilibrium expected payments and payoffs are all pinned down, up to a contstant. Note

that this condition on the belief-restrictions admits as special cases all belief restrictions

in which the belief sets of the agents are constant in their types, which in turn include as

special cases both the belief-free case, and Bayesian settings with independent types.

Theorem 2 in Section 4 shows that, in order to guarantee that the second-order conditions

are satisfied, besides the condition in Theorem 1, the belief-based terms must also satisfy

the following: Ebθi

[
∂2βi
∂2mi

(θi, θ−i)
]
≤ −Ebθi

[
∂2U∗

i
∂2mi

(θi, θ−i)
]

for all θi and any bθi ∈ Bθi

(where U∗
i (·) denotes the payoff function induced by the canonical transfers). A slight

strengthening of this condition is also sufficient (Theorem 2). Theorem 3 instead provides

a tight characterization that highlights the role of belief-based terms in overcoming failures

of standard single-crossing and monotonicity conditions.

These results formalize a general design principle. The main idea is to focus on the

design of belief-based terms that satisfy suitable conditions, to be added to the canonical

transfers, in order to pursue specific objectives. These may include extra desiderata, beyond

incentive compatibility, in settings that satisfy standard single-crossing and monotonicity

conditions.2 But also more fundamental interventions, such as remedying the convexity of

2Classic examples of ‘extra desiderata’ include budget balance (d’Aspremont and Gérard-Varet, 1979) or sur-

plus extraction (Crémer and McLean, 1985, 1988 ; McAfee and Reny, 1992). More recently, other properties have

been pursued, such as supermodularity (Mathevet, 2010 ; Mathevet and Taneva, 2013), contractiveness (Healy

and Mathevet, 2012) or uniqueness (Ollár and Penta, 2017, 2022, 2023). Pursuing uniqueness via ‘simple’ mech-

anisms (as opposed to the classical approach to full implementation (e.g., Maskin, 1999; Palfrey and Srivastava,

1989; ?, etc.) has been the focus of a growing literature on ‘unique implementation’ (cf., Ollár and Penta, 2017,

2022, 2023, 2024b; Winter, 2004; Bernstein and Winter, 2012; Halac et al., 2021, 2022).



5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

the payoff function when single-crossing and monotonicity conditions fail. More broadly,

these results identify the scope of B-IC in a general class of settings.

For instance, the ‘robust revenue equivalence’ result that we discussed earlier implies

that, under generalized independence, there is no scope for improving over the canonical

transfers’ ability to achieve incentive compatibility, via the design of belief-based terms.

Outside of these cases, however, Proposition 1 shows that a weak responsive moment con-

dition suffices to make any allocation rule d : Θ → X incentive compatible, in any envi-

ronment, via the suitable design of a belief-based term. Loosely speaking, this condition

requires that the designer knows how agents’ expectations of a moment of the opponents’

types moves, conditional on their own type, and that this is described by a function that is

nowhere constant. This condition is violated under generalized independence, but it is very

permissive otherwise, thereby showing that minimal knowledge about agents’ beliefs may

go a long way in terms of expanding the possibility of implementation.

The ‘any d goes’ result of Proposition 1, which arises discontinuously as generalized in-

dependence is lifted, is somewhat reminiscent of the Crémer and McLean (1985, 1988) and

McAfee and Reny (1992) results on full surplus extration (FSE), which also arise discon-

tinuously in Bayesian environments, when minimal degrees of correlation are introduced.

Importantly, however, FSE does not generally ensue in our setup. If the belief-restrictions

are not Bayesian, even if any d can be implemented under the responsive moment con-

dition, there may still be bounds to the surplus that can be extracted (Propositions 3 and

4). Information rents generally remain, and their size depends on the joint properties of

the allocation rule, agents’ preferences, and the belief restrictions. Moreover, information

rents shrink as the belief sets get finer, and the designer relies on more information about

agents’ beliefs (Proposition 5). At the extreme, if B is a Bayesian setting with correlated

types, then FSE obtains. In fact, under a novel ‘full rank’ condition, we provide the follow-

ing ‘anything goes’ result (Proposition 2): in a Bayesian setting that satisfies ‘full rank’,

for any (d, t), there exist transfers t′ that are both incentive compatible and that attain the

same expected payments as t. This in turn implies an exact FSE result for settings with a

continuum of types.3

3Crémer and McLean (1985, 1988) first studied FSE with finite types. McAfee and Reny (1992) extended the

result to a continuum of types and to general mechanism design problems. Their condition does not always ensure
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Jointly, Propositions 1-5 show that the ultimate source of FSE results is not the co-
movement between types and beliefs per se, but rather the information that, in standard
Bayesian settings, the designer has about agents’ beliefs. This observation highlights an
important feature of our framework. Specifically, since their very inception, FSE results
have famously been received as disturbing.4 In response, mechanism design has largely
shied away from studying environments with correlated or non-exclusive information. But
the pervasiveness and economic relevance of these settings can hardly be underplayed:

“[...] we should stress that in our opinion the independence assumption should be used only with great

caution [...]. It does enable the derivation of results that on the surface look more ‘realistic’ (there is no

full extraction of the surplus). However, the derivation of these results rely on a very ‘unrealistic’ assump-

tion. Furthermore, [...] a small deviation from this assumption can induce fundamentally different results.”

(Crémer and McLean (1988, p.1255)).

Our results show that the belief-restrictions framework is capable of expressing a mean-

ingful notion of non-exclusive information that is useful for implementation, but without

incurring into the pitfalls of FSE. This framework may thus favor mechanism design’s reap-

propriation of environments with non-exclusive information, in which distilling intuitive

and reliable economic intuition has long appeared elusive, within the prevailing paradigm.

In Section 5 we discuss further methodological considerations. Theorem 4, in particular,

provides a characterization of the equilibrium payoffs that clarifies the connection between

standard envelope formulae and the belief-based terms at the center of our analysis, and to

compare the relative merits of the envelope approach and of the first-order approach that

we pursued in this paper. Section 6 discusses the related literature. Section 7 concludes.

2. FRAMEWORK

Payoff Environments. The payoff environment represents agents’ information about ev-

eryone’s preferences over the set of feasible allocations, and an allocation rule that maps

exact FSE, but it characterizes almost FSE, in the sense that for any ϵ > 0, there is a mechanism in which agents’

surplus in the truthful equilibrium is less than ϵ. Our condition, in contrast, ensures exact FSE. It is stronger than

McAfee and Reny’s, but closer in spirit to Crémer and McLean (1985, 1988)’s full rank condition.
4The quote from McAfee and Reny (1992) at the beginning of this introduction echos analogous remarks by

Crémer and McLean (1988, p.1254): “Economic intuition and informal evidence (we know of no way to test such

a proposition) suggest that this result is counterfactual, and several explanations can be suggested.” The influential

critique of Neeman (2004) may also be ascribed to this view.
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agents’ information to the space of allocations, and which represents the designer’s objec-

tive. Formally, let I = {1, ..., n} denote the (finite) set of agents, X ⊆Rm the set of alloca-

tions. For each i ∈ I , we let Θi denote the set of player i’s payoff types, with typical element

θi, assumed private information. We adopt the standard notation for type profiles, and let

θ ∈ Θ := ×i∈IΘi, and for each i, we let θ−i ∈ Θ−i := ×j ̸=iΘj . For each i, the valuation

function is denoted vi :X ×Θ→ R. Note that we allow vi to depend on the entire profile

of types, so as to allow the case of interdependent values. For each i, we let ti ∈ R denote

the monetary transfer to agent i, and assume that i’s utility for each (x, t) ∈X ×Rn, given

type profile θ ∈Θ, is equal to ui(x, t, , θ) = vi (x, θ)+ ti. The model can thus accommodate

both private and interdependent values, as well as general externalities in consumption, in-

cluding the cases of pure private goods and public goods. An allocation rule is a function

d : Θ→X , which assigns, to each type profile, the allocation that the designer wishes to

implement. We maintain throughout the following assumptions:

ASSUMPTION 1—Payoff Environment: E = ((Θi, vi)i∈I , d) is such that ∀i ∈ I:

(i) Θi := [θi, θi]⊂R
(ii) vi is twice continuously differentiable.

(iii) d is piecewise differentiable.5

Note that these assumptions require that d is only piecewise differentiable in types, and

hence the model also accommodates discontinuous allocation rules, which are common

for instance in auctions, bilateral trade and assignement problems. The main substantial

restriction is the one-dimensionality of the payoff types.6

Belief Restrictions. We model the maintained assumptions on agents’ beliefs via the

belief-restrictions we first introduced in Ollár and Penta (2017). We let ∆(Θ−i) denote

the set of probability measures over Θ−i, which represent beliefs about the opponents’

5We say that f : S →R is piecewise differentiable on a closed and convex set S ⊂Rn if there exist a collection

(Sk)k=1,...,K of pairwise disjoint convex sets such that ∪K
k=1Sk = S, and continuously differentiable functions

gk : S →R, k = 1 . . .K , such that f =
∑K

k=1 fk where, for each k = 1, ...,K, fk(x) = 1[x∈Sk]
· gk(x).

6It is well known that incentive compatibility is significantly more problematic outside of this domain, as

multidimensionality of types severaly limits its possibility (Jehiel and Moldovanu (2001) and Jehiel et al. (2006)).

We extend our approach to the multidimensional case in Ollár and Penta (2024a).
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types.Belief restrictions consist of a collection of sets of possible beliefs, for each type of

each agent, over the set of type profiles of the other agents. Formally, a belief restriction is

a collection B = ((Bθi)θi∈Θi
)i∈I , such that, Bθi ⊆∆(Θ−i) is non-empty for each i and θi.

Belief restrictions can be used to accommodate varying degrees of robustness. For instance:

(i) the belief-free settings of the early literature on robust mechanism design (e.g., Berge-

mann and Morris (2005, 2009a,b), Penta (2015), etc.) are obtained by letting Bθi =∆(Θ−i)

for all i and θi ∈Θi, and denoted by BBF = ((BBF
θi

)θi∈Θi
)i∈I ;

(ii) standard Bayesian settings correspond to the special case in which belief restrictions

are commonly known and each belief set is a singleton for every type: B⋄
θi
= {b⋄θi} for

all i and θi ∈ Θi. In this case, each player’s payoff type uniquely pins down the infinite

belief hierarchy, as in the interim formulation in a standard Harsanyi type space. Further,

in the special case of a common prior type space, there exists p ∈ ∆(Θ) s.t., for each i

and θi, p(·|θi) = b⋄θi ∈∆(Θ−i). If, furthermore, such a common prior is independent across

agents, then we also have b⋄θi = b⋄
θ′i

for all θi, θ′i ∈Θi and for all i ∈ I .

(iii) intermediate notions of robustness obtain whenever Bθi ⊂ ∆(Θ−i) for some θi.

Some special cases have been considered, for instance, by Ollár and Penta (2017) and Ol-

lár and Penta (2023), respectively to model situations in which agents commonly know

some moments of the distributions of the opponents’ types (common knowledge of mo-

ment conditions), or that agents commonly believe that the opponents’ types are iden-

tically distributed (common belief in identicality). The latter belief restrictions, which

we denote as Bid = ((Bid
θi
)θi∈Θi

)i∈I , are defined for settings with a common set of

types (i.e. Θj = Θk for all j, k ∈ I) as follows: Bid
θi

= {bθi ∈ ∆(Θ−i) : margΘj
bθi =

margΘk
bθi for all j, k ̸= i} for all i and θi.

These are just examples of some special cases, but the framework is much more gen-

eral. We also stress that since the focus here is on partial implementation and incentive

compatibility, the results in this paper do not require the belief restrictions to be common

knowledge among the agents. Hence, they are just restrictions on the first-order beliefs.

Given belief restrictions B = ((Bθi)θi∈Θi
)i∈I and B′ = ((B′

θi
)θi∈Θi

)i∈I , we write B ⊆ B′

to denote that Bθi ⊆ B′
θi

for all i ∈ I and all θi ∈ Θi. If B ⊆ B′, then B imposes stronger

restrictions than B′, in that the designer can rule out more beliefs in the former than in

the latter. In this sense, the belief-free model BBF is minimal in the information that the
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designer has, as any model B is such that B ⊆ BBF . At the opposite extreme, any Bayesian

setting B⋄ is maximal, as no distinct belief restriction B is such that B ⊆ B⋄. Belief restric-

tions Bid are an example of an intermediate robustness requirement, B⋄ ⊆Bid ⊆BBF .

Mechanisms. A mechanism is a tuple M = ((Mi)i, g), where Mi denotes the set of

messages of player i, and g :M →X × Rn is the outcome function, that assigns to each

profile of messages, m ∈M :=×i∈IMi, an allocation and a profile of payments, g(m) =

(x, t) ∈ X × Rn. We consider direct mechanisms, in which agents report their type (i.e.,

Mi =Θi for all i) and the allocation is chosen according to d (i.e. g(m) = (d(m), t(m))). A

direct mechanism therefore is completely pinned down by the transfer scheme t= (ti)i∈I ,

where for each i ∈ I , ti :M → R specifies the transfer to agent i for all profile of reports

m ∈M ≡Θ. Notice that, by definition, each ti is bounded.

Each (direct) mechanism (d, t) induces a game with incomplete information, with ex-

post payoff functions U t
i (m; θ) = vi(d(m), θ) + ti(m), which are bounded functions under

the maintained assumptions. We adopt the following notation: For any θi ∈Θi, b ∈∆(Θ−i)

and mi ∈Mi, we let EbU t
i (mi; θi) :=

∫
Θ−i

U t
i (mi, θ−i; θi, θ−i)db, and for any f : Θ→ R,

θi ∈Θi and b ∈Bθi , we let Eb[f (θi, θ−i)] :=
∫
Θ−i

f (θi, θ−i)db.

Incentive Compatibility. Incentive compatibility requires that truthtelling is a mutual

best response for the agents, for all beliefs that are consistent with the belief restrictions B.

DEFINITION 1: A direct mechanism (d, t) is B-incentive compatible (B-IC) if for all

i ∈ I , θi ∈Θi, mi ∈Mi, EbU t
i (mi; θi)≤ EbU t

i (θi; θi) for all b ∈ Bθi .

When d is clear from the context, we say that the transfer scheme t is B-IC.

Note that in a Bayesian environment, B-IC is equivalent to interim (or Bayesian) incen-

tive compatibility (IIC). At the opposite extreme, in belief-free settings it is equivalet to

ex-post incentive compatibility (ep-IC). For intermediate belief restrictions, i.e. such that

there exists at least some type θi of some agent i for which Bθi is a strict subset of ∆(Θ−i),

but not a singleton, then B-IC is weaker than ep-IC (since truthful revelation need not be

optimal for all beliefs about Θ−i) but it is stronger than IIC (in that it requires truthful

revelation to be optimal for all beliefs in Bθi , not just for one). More generally:
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REMARK 1: If B ⊆ B′, and (d, t) is B′-IC, then it is also B-IC.

2.1. Leading Example and Preview of Results

EXAMPLE 1—IIC without Monotonicity (Interdependent Values): Two agents, with

sets of types Θi = [0,1] and valuation functions vi (x, θ) = (θi + γθj)x, for each i and

j ̸= i, where x ≥ 0 denotes the quantity of a public good, and γ is a parameter of prefer-

ence interdependence. These preferences satisfy the following Single-Crossing Conditions:

(ep-SCC:) for all i and (x, θ),
∂2vi
∂x∂θi

(x, θ)> 0 (1)

Agents’ types are such that θi = θ0 + ηi, where θ0 is a (unobserved) common value

component, uniformly distributed over [0,1/2], and ηi is an idiosyncratic component, also

uniformly distributed over [0,1/2], independently from θ0 and ηj . Agents only observe θi.

Clearly, this is a standard Bayesian setting (hence, Bθi = {bθi} for each θi ∈Θi), and given

the distributional assumptions, the following conditional expectations hold for all θi ∈ Θi

and i: Ebθi (θj) = E (θj |θi) = θi/2 + 1/4.

With cost of production c(x) = x2/2, the efficient allocation is d∗ (θ) = (1 + γ) (θ1 +

θ2). As it is well-known, under the single-crossing condition above, an allocation rule is

implementable if and only if it is increasing in agents’ types, which is clearly not the case

for the efficient allocation rule, if γ = −2. In fact, let us consider the generalized VCG

transfers in this setting, and the ex-post payoff functions they induce:

tV CG
i (m) =− (1 + γ)

(
1

2
m2

i + γmimj + γm2
j

)
,

UV CG
i (m,θ) = (1 + γ)(mi +mj)(θi + γθj)− (1 + γ)

(
1

2
m2

i + γmimj + γm2
j

)
It is easy to check that while truthful revelation satisfies the first-order conditions

of the ex-post payoff function, it violates the second order conditions: with γ = −2,

∂2UV CG
i (θ, θ)/∂2mi = −(1 + γ) > 0. Thus, due to the combination of the ep-SCC and

of the decreasing allocation rule, if the opponents report truthfully, the payoff function in-

duced by the VCG transfers is globally convex, and hence truthful revelation is a local

minimum. Ex-post incentive compatibility therefore is impossible in this setting. Further-
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more, the VCG transfers are not IIC either: with these transfers, truthful revelation fails the

second-order conditions also from the viewpoint of the interim payoffs.

We illustrate next how the VCG transfers may be modified to solve this problem, using

information about agents’ beliefs. For example, consider the following modified transfers,

tmod
i (m) = tV CG

i (m) + (1 + γ)
(
m2

i +mi − 4mimj

)
, (2)

which induce the following payoff functions:

Umod
i (m; θ) =UV CG

i (m; θ) + (1 + γ)
(
m2

i +mi − 4mimj

)
=

=(1 + γ)

(
((θi + γθj)− (mi + γmj)) (mi +mj) +

3

2
m2

i +mi − 3mimj

)
.

Taking the first order conditions from the interim payoff function, and evaluating it at

the truthful profile, we obtain:

∂Ebθi [Umod
i (θ; θ)]

∂mi
=Ebθi

(
(1 + γ) (2θi + 1− 4θj)

)
=(1 + γ)

(
2θi + 1− 4Ebθi (θj |θi)

)
= 0.

Hence, truthful revelation does satisfy the first-order conditions, particularly thanks to

the simplification in the last equality, which used the property we highlighted above, that

Ebθi (θj) = E (θj |θi) = θi/2 + 1/4 for all θi. To check the second order conditions, since

γ =−2, we have ∂2Umod
i

∂2mi
(m; θ) =−1< 0. Truthful revelation therefore is a best response

to the opponents’ truthful strategy, and hence these modified transfers are IIC. □

Note that the transfers in (2) can be written as tmod
i (m) = tV CG

i (m) + βi(m), where

βi : M → R is a belief-based term that satisfies Ebθi

[
∂βi
∂mi

(θi, θ−i)
]
= 0 for all θi and

bθi ∈ Bθi . Theorem 1 in Section 3 shows that this holds in general: for any belief-

restrictions B, any B-IC transfers must be of this form, provided that tV CG is replaced

with a suitable generalization of the VCG mechanism, which we call canonical transfers.

Section 3.2 discusses several implications of this result, including a robust version of the

revenue equivalence theorem, which we obtain under a notion of generalized independence

that also applies to non-Bayesian settings (i.e., the Bθi are not all singletons).
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The above, however, are not the only IIC transfers in this setting. For instance, if some

t= tV CG + β is incentive compatible, then truthful revelation satisfies the first-order con-

ditions also for the transfers tV CG+αβ, for any α ∈Rn. Incentive compatibility, however,

may hold for some α but fail for others.

EXAMPLE 1 (continued): In the setting of Ex. 1, consider transfers of the form

tmod,α
i (m) = tV CG

i (m)+αi(1+ γ)(m2
i +mi− 4mimj). With these transfers, truthful rev-

elation satisfies the second-order conditions if and only if (1 + γ)(2αi − 1) < 0. Hence,

despite the allocation being decreasing when γ <−1, IIC is possible here for any γ ∈R. □

Extending this logic, Theorem 2 in Section 4 implies that, in order to guarantee that

the second-order conditions are satisfied, besides the necessary condition above the belief-

based terms should also be such that Eb
[
∂2UV CG

i
∂2mi

(θi, θ−i)
]
<−Eb

[
∂2βi
∂2mi

(θi, θ−i)
]

for all

θi and b ∈ Bθi ⊆∆(Θ−i). Theorem 2 generalizes this insight beyond efficient allocation

rules, provided that the VCG transfers are replaced by their suitable generalization. Theo-

rem 3 provides a characterization that highlights the role of belief-based terms in overcom-

ing failures of standard single-crossing and monotonicity conditions. Theorem 4 in Section

5 characterizes the equilibrium payoffs, vis-à-vis standard envelope formulae.

We used Ex. 1 to illustrate the basic logic of our first-order approach, within a standard

Bayesian environment and with standard single-crossing conditions. As we discuss in Sec-

tion 4.3, a lot more can be achieved in this setting. Proposition 2, for instance, implies that,

within the context of this example, any allocation rule could be implemented, and inducing

any expected payments, including those that extract the full surplus. Outside of Bayesian

settings, however, even if weak conditions on beliefs suffice to obtain very permissive im-

plementation results (Proposition 1), informational rents generally remain (Propositions 3

and 4), and they get larger as the robustness requirements get stronger (Proposition 5).

3. GENERALIZED INCENTIVE COMPATIBILITY: NECESSITY

In this section we derive necessary conditions for B-IC transfers. We first introduce the

canonical transfers, t∗ = (t∗i (·))i∈I , which are defined as follows: for each i and m,

t∗i (m) =−vi (d (m) ,m) +

∫ mi

θi

∂vi
∂θi

(d (si,m−i) , si,m−i)dsi. (3)
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These transfers are pinned down by the necessary conditions for ep-IC, up to an additive

term that is constant in own report.7 This characterization of the ep-IC transfers can be

obtained both by inverting the envelope formula for the ex-post payoff function (Milgrom

and Segal, 2002), or directly from the first-order approach, which derives the (necessary)

local incentive constraints for ep-IC from the first-order conditions of the ex-post payoff

function. In this section we provide an analogous result for B-IC transfers based on a first-

order approach. An envelope formulation is discussed in Section 5.2.

3.1. A first-order approach

The main result in this section derives necessary conditions for B-IC transfers, for gen-

eral belief restrictions. In our result, we provide a generalization of the classical first-order

approach that identifies necessary conditions for local incentive compatibility constraints

(cf. Rogerson (1985); Jewitt (1988)). Compared to the classical results, the main difference

is that, instead of focusing on the ex-post payoff function, we take an interim perspective

and consider the expected payoff function of every type θi, for all beliefs in the set Bθi .

THEOREM 1—B-IC Transfers (Necessity): Under the maintained assumptions, if t is

piecewise differentiable and (d, t) is B-IC, then for all i, and for all m ∈M ≡Θ,

ti (m) = t∗i (m) + βi (m) , (4)

where βi :M → R is piecewise differentiable and such that, for all θi and for all beliefs

b ∈Bθi that have a piecewise differentiable pdf, at all points of differentiability,

∂Eb [βi (mi, θ−i)]

∂mi

∣∣∣∣
mi=θi

= 0. (5)

7The ‘canonical transfers’, and the associated canonical direct mechanism (d, t∗), should not be confused with

the ‘canonical mechanism’, which traditionally refers to Maskin’s (non-direct) mechanism for full implementa-

tion. Special instances of the canonical direct mechanism have appeared throughout the literature on partial im-

plementation, e.g. in the auction mechanisms of Myerson (1981), Dasgupta and Maskin (2000), and Segal (2003),

the pivot mechanisms of Milgrom (2004) and Jehiel and Lamy (2018), the public goods mechanisms of Green and

Laffont (1977) and Laffont and Maskin (1980), and the one-dimensional results of Jehiel and Moldovanu (2001)).
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The result in Equation (4) shows that, in order to design a B-IC transfer scheme, it is

without loss to restrict attention to additive modifications of the canonical transfers, pro-

vided that the added terms satisfy the expectation condition in Equation (5). We refer to the

functions βi :M →R that satisfy Equation (5) as the belief-based terms that are consistent

with B (or simply belief-based terms, when B is clear from the context).

3.2. Some Direct Implications of Theorem 1

Theorem 1 implies that identifying the set of belief-based terms is crucial to understand

the limits of incentive compatibility. For some belief-restrictions, identifying this set, or

some of its key properties, is relatively straightforward and delivers immediately interesting

insights on the incentive compatible transfers. We discuss a few cases:

3.2.1. Belief-Free Settings

In belief-free settings, BBF , the condition in (5) is required to hold for all beliefs about

Θ−i, including degenerate ones, which is only possible if βi is constant in mi. Hence, a

transfer scheme is BBF -IC (that is, ep-IC) only if it coincides with the canonical transfers,

up to a function that is constant in agents’ own reports. Thus, when all beliefs are allowed,

there are no non-trivial belief-based terms. In this sense, the classical result discussed above

obtains as a special case of Theorem 1:

COROLLARY 1: If t is BBF -IC, then, ∀i, βi (m) := ti(m)− t∗i (m) is constant in mi.

3.2.2. Bayesian Settings

In a Bayesian setting, B⋄, for any agent i and for any function Gi : M → R that is

Lebesgue-integrable with respect to mi, the term fi (θi) := Eb⋄θiGi (θi, θ−i) is uniquely

pinned down by the collection (b⋄θi)θi∈Θi
of agent i’s beliefs. Hence, letting

βi (m) :=

∫ mi

θi

Gi (s,m−i)ds−
∫ mi

θi

fi (s)ds,

we obtain a belief-based term, since βi thus defined satisfies the condition in eq. (5).

In this sense, Bayesian settings are maximal in the set of belief-based terms they admit,

since they can be generated starting from any arbitrary Gi :M → R. This is in stark con-

trast with the belief-free case, which as seen admits no non-trivial belief-based terms, and



15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

hence essentially no incentive compatible transfers other than the canonical ones. Here, the

richness of belief-based terms gives rise to a multitude of IIC transfers, which may be used

to attain different objectives beyond incentive compatibility. Some of this richness has been

exploited by the literature, for instance to pursue budget balance, surplus extraction, super-

modularity, contractiveness, or uniqueness (see references in footnote 2). By identifying

the key condition on the belief-based terms, Theorem 1 unifies these results and lays the

ground to a systematic understanding of the possibilities, and particularly the limits, of IIC.

3.2.3. Independent Types

In Bayesian settings with independent types, the belief sets not only are all singletons,

but also contain the same distribution for all types of a player: for each i, B⋄
θi
= {b⋄i } for all

θi ∈Θi. Then, the condition in eq. (5) implies that, for any belief-based term, its expected

value at the truthful profile is constant in the agent’s own type. This is stated formally in

point 1 of the next Corollary. In turn, it also implies the following two points:

COROLLARY 2: Let B⋄ be a Bayesian environment with independent types, and let b⋄i ∈
∆(Θ−i) denote agent i’s beliefs, regardless of his type. Then:

(i) If t is B⋄-IC, then for each i, there exists κi ∈R s.t. Eb⋄i [βi (mi, θ−i)] = κi for all mi.

(ii) If t is B⋄-IC, then for each i, there is a κi ∈ R such that, Eb⋄i ti (θi, θ−i) =

Eb⋄i [t∗i (θi, θ−i)] + κi for all θi ∈Θi.

(iii) (d, t) is B⋄-IC for some t if and only if (d, t∗) is B⋄-IC.

Point (ii) is Myerson’s (1981) revenue equivalence, here stated for general environments

with interdependent values and independently distributed types. Point (iii) says that an allo-

cation rule is partially implementable, in the sense of interim (or Bayes-Nash) equilibrium,

if and only if it is implemented by the canonical transfers. Intuitively, since all types of an

agent share the same beliefs, beliefs are not helpful to screen types, beyond what can be

achieved based on the ex-post payoffs. Note that this is not to say that IIC is as demand-

ing as ep-IC: for instance, if single-crossing conditions hold in the interim sense, but not

ex-post, then it may be that t∗ is IIC, but not ep-IC. Nonetheless, to verify whether some

transfers are IIC, it suffices to check whether IIC holds for such transfers: if t∗ is not IIC,

then no belief-dependent term could recover incentive compatibility.
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3.2.4. Generalized Independence

The logic above points to another interesting implication of Theorem 1, which suggests

introducing the following notion of generalized independence for non-Bayesian settings:

DEFINITION 2: B satisfies generalized independence if, for each i ∈ I ,
⋂

θi∈Θi
Bθi ̸= ∅.

This condition is weaker than requiring that the belief sets are constant across types (i.e.,

∀i ∈ I Bθi = B
θ
′
i

for all θ, θ
′
i ∈ Θi), which in turn holds in any of the following special

cases: (i) belief-free settings; (ii) Bayesian models with independent types; (iii) the Bid-

restrictions, for common belief in identicality. With this, we obtain the following:

COROLLARY 3: Let B satisfy generalized indepence, and let pi ∈ ∩θi∈Θi
Bθi . Then:

(i) For any belief-based term βi :M →R, ∃κi ∈R s.t. Epi [βi (mi, θ−i)] = κi for all mi.

(ii) If (d, t) is B-IC, then for each i, there is a κi ∈ R such that, Epiti (θi, θ−i) =

Epi [t∗i (θi, θ−i)] + κi for all θi ∈Θi.

(iii) (d, t) is B-IC for some t if and only if (d, t∗) is B-IC.

The discussion that follows Corollary 2 therefore applies to any belief-restrictions that

satisfy generalized independence. Point (ii), in particular, extends revenue equivalence to

such non-Bayesian settings as well. All these results follow directly from Theorem 1.8

4. GENERALIZED INCENTIVE COMPATIBILITY: A DESIGN PRINCIPLE

By design, the transfers that satisfy the conditions in Theorem 1 are such that truthful-

revelation satisfies the first-order conditions of the interim payoff functions, for all beliefs

consistent with the belief restrictions for every type. In this sense, these restrictions only re-

flect local requirements of incentive compatibility. But just like the canonical transfers may

fail to be incentive compatible, so may the transfers that satisfy the conditions in Theorem

1. This may be either because truth-telling is a local minimum (e.g., if the payoff function

8This Corollary is related to some of the results in Lopomo et al. (2021), who showed that under standard

ep-SCC and Monotonicity assumptions, a “full dimensionality” condition on the overlap of the belief sets implies

that there is no gap between the possibility of ep-IC and B-IC. As we explain in Section 5.1.3, and also using the

characterization in Theorem 3, such an equivalence of B-IC and ep-IC follows from Corollary 3 and Theorem 3

under standard ep-SCC and Monotonicity conditions, but not necessarily otherwise.
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is locally convex) or if it is a local but not a global maximum (which may be the case if

the payoff function is not globally concave). Fully understanding incentive compatibility

therefore requires exploring what conditions ensure that the payoff function has the right

curvature. This is typically what single-crossing and monotonicity conditions do.

In this Section we discuss how the belief-based terms can be used to induce the concavity

of the payoff function that is needed to ensure incentive compatibility. In Section 4.1 we

first consider the special case of environments with differentiable allocation rules, where

Theorem 1 readily delivers tractable necessary and sufficient conditions (Theorem 2). Then,

in Section 4.2 we relax the differentiability assumption, and provide a general characteri-

zation of the B-IC transfers that sheds further light on the role that the belief-based terms

have in relation with standard single-crossing and monotonicity conditions (Theorem 3).

4.1. B-IC in the differentiable case: a second-order approach

First we consider the special case in which all functions are differentiable. In these set-

tings, Theorem 1 readily delivers the following simple conditions for B-IC:

THEOREM 2—Conditions under Differentiability: Assume that vi, ti, d are all twice dif-

ferentiable, and for each i, let βi := ti − t∗i .

[Necessity:] Transfers t= (ti)i∈I are B-IC only if, for all i and θi ∈Θi, for all b ∈Bθi:

(i) Eb[∂iβi (θi, θ−i)] = 0 and

(ii) there exists an open neighborhood of θi, Nθi , s.t. for all mi ∈Nθi:

Eb[∂2iiU
∗
i (mi, θ−i; θi, θ−i)]≤−Eb[∂2iiβi (mi, θ−i)]. (6)

[Sufficiency:]: Transfers t = (ti)i∈I are B-IC if, for all i and θi ∈ Θi, for all b ∈ Bθi ,

Condition (i) holds and Inequality (6) holds for all mi ∈Mi.

Condition (i) states the necessary condition from Theorem 1, for the differentiable case;

Condition (ii) states the nessecary second order condition instead, it relates the curvature

of the payoff function of the canonical direct mechanism to the belief-based term.

EXAMPLE 1 (redux): In terms of the decomposition from Theorem 1, the belief-based

terms in the transfers in eq. (2) are such that βi(m) = (1 + γ)(m2
i +mi − 4mimj), with
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first- and second-order derivatives, respectively, ∂iβi(m) = (1 + γ)(2mi + 1− 4mj) and

∂2iiβi(m) = (1+ γ)2. The expected payoffs of the canonical transfers instead are such that,

for all beliefs consistent with the belief-restrictions, ∂2iiE
bθi [U∗

i (m; θ)] =−(1+ γ). Hence,

βi satisfies Condition (i) of Theorem 2, since it holds in that setting that Ebθi [2θi + 1 −
4θj ] = 0. Moreover, since with γ =−2 the VCG transfers induce convex payoffs, the left-

hand side of Condition (ii) is larger than 0, but βi is concave enough that Condition (ii)

holds, so that Ebθi [Umod
i ] overall is indeed concave in mi for all θi and bθi ∈Bθi . □

Theorem 2 distills a general design principle. To see this, note that the canonical transfers

are ep-IC if the term on the left-hand side of (6) is less than zero, i.e. if U∗
i is itself concave.

When this is not the case, the belief-based term can be used to relax this constraint: if

belief-based terms exist that satisfy Condition (i), and that are sufficiently concave so as

to make (6) hold for all mi, then B-IC can be attained. The general idea therefore is to

identify sufficiently concave belief-based terms, subject to Condition (i) being satisfied.

This is useful both to recover incentive compatibility when the canonical transfers do not

achieve it, but also to identify the limits of B-IC. We illustrate these points with the next

example, that exhibits a perhaps starker violation of standard SCM conditions than Ex. 1.

EXAMPLE 2—Opposing Interests and Belief Restrictions: A government is deciding on

the quantity x of spending in pollution reduction activities. For simplicity, society consists

of two agents, and the government’s desired level of expenditure is d (θ) = K (θ1 + θ2),

where K > 0, and θi ∈ [0,1] denotes the productivity of agent i, which is their private

information. Agents work in different sectors, with opposing preferences over pollution re-

duction, as a function of their productivity: their valuation functions are v1 (θ, x) = θ1x and

v2 (θ, x) =−θ2x, respectively. Clearly, the government’s policy is not efficient in this case.

This may be due to political or institutional considerations, which may lead the government

to favor a particular agenda, despite the opposite preferences of certain social groups.

The belief restrictions are such that Bθi = {b ∈∆(Θj) : Eb(θj) = θi/2} , for each θi and

i. In words, the designer knows that both agents’ expect the opponent’s type, on average,

to be half of their own. But beyond this, the actual distributions that describe their beliefs

are not known to the designer.
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The canonical transfers (eq. (3)) in this problem are such that:

t∗1 (m) =−m1K (m1 +m2) +K

∫ m1

0
(s+m2)ds=−K

1

2
m2

1,

and t∗2 (m) = +m2K (m1 +m2)−K

∫ m2

0
(m1 + s)ds=K

1

2
m2

2,

which induce the following payoff functions:

U∗
1 (m,θ) = θ1K (m1 +m2)−K

1

2
m2

1,

U∗
2 (m,θ) =−θ2K (m1 +m2) +K

1

2
m2

2.

Due to the agents’ opposing interests, standard single crossing and monotonicity conditions

fail in this setting, and it can be checked that the optimal strategies in (d, t∗) have agent 2

always report extremal messages, either 0 or 1. The canonical transfers therefore are neither

ep-IC nor B-IC. The reason is that while truthful revelation satisfies the F.O.C. for both

agents, since the allocation rule moves with θ2 in the opposite direction of 2’s marginal

utility for x, U∗
2 is convex in m2 and hence the S.O.C. fail for agent 2.

To characterize the set of B-IC transfers, first we identify the set of belief-based terms

that satisfy the necessary condition in part 1 of Theorem 2. (We mainitain in this example

that the lowest type of each agent always pays 0.) In this setting, it can be shown that βi :

M → R satisfies such condition if and only if ∂iβi (mi,mj) = (mi − 2mj)Hi (mi) where

Hi is a real function on Mi ≡Θi. (It is easy to see that for such βi function, ∂iEbβi (θi) = 0.

The only-if part is less straightforward, and we leave it to the Appendix.) Hence, belief-

based terms in this setting must necessarily take the following form:

βi(m) =

∫ mi

0
(s− 2mj)Hi(s)ds

Notice that, since for each θi and b ∈Bθi we have Eb[θj ] = θi/2 the following simplification

occurs for all such beliefs:

∂2iiEb[βi (θ1, θ2)] =Hi(θi) +
(
θi − 2Eb[θj |θi]

)
H ′

i(θi) =Hi(θi)

Given this, for agent 1 part 2 of Theorem 2 holds if and only if, for all beliefs consistent

with the belief-restrictions, −K + ∂211Eb[β1 (θ1, θ2)] ≤ 0. Exploiting the condition above,
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this simplifies to H1(θ1)≤K for all θ1. Similarly, for agent 2 we obtain H2 (θ2)≤−K for

all θ2. Hence, a transfer scheme is B-IC if and only if it takes the form

t1 (m1,m2) =−1

2
m2

1 +

∫ m1

0
(s− 2m2)H1 (s)ds, and

t2 (m1,m2) =
1

2
m2

2 +

∫ m2

0
(s− 2m1)H2 (s)ds,

subject to the restriction on the Hi functions above. Exploiting again the fact that, for each

θi and b ∈Bθi , Eb[θj ] = θi/2, the expected transfers at the truth-telling profile are:

Eb[t1 (θ) |θ1] =−1

2
θ21 +

∫ θ1

0
(s− θ1)H1 (s)ds, and

Eb[t2 (θ) |θ2] =
1

2
θ22 +

∫ θ2

0
(s− θ2)H2 (s)ds,

from which we can see that they are minimized by setting each Hi(θi) at the corresponding

upper bound, that is H1 ≡ K and H2 ≡ −K . The resulting transfers, tCmin
1 (m1,m2) =

m2
1
2 (K − 1)− 2Km2m1, and tCmin

2 (m1,m2) =
m2

2
2 (1−K) + 2Km1m2, therefore attain

the lowest expected transfers to each agent pointwise, for each type realization θ ∈Θ and

regardless of agents’ true beliefs within Bθi . □

4.2. B-IC transfers in the general case: A Full Characterization

We provide next a characterization of the B-IC transfers in general environments, that

highlights the role that belief-based terms may play in overcoming failures of standard

single-crossing and monotonicity conditions, as it was the case in the previous example.

THEOREM 3—B-IC: Characterization: Under the maintained assumptions of Theorem

1, for each i, let βi := t∗i − ti. Then, (d, t) is B-IC if and only if for all i, θi, b ∈Bθi and mi:

Eb

[∫ θi
mi

(
∂vi
∂θi

(d (s, θ−i) , s, θ−i)− ∂vi
∂θi

(d (mi, θ−i) , s, θ−i)
)
ds

]
≥ Eb

[
βi (mi, θ−i)−βi (θ)

]
.

To understand this result, let us first consider the belief-free case, where B-IC coincides

with ep-IC. First, as this condition must hold for all beliefs, it must also hold in the ex-

post sense, and hence we can just focus on the terms inside the square brackets. Second,
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as discussed, in belief-free settings the necessary condition in Theorem 1 implies that the

belief-based terms are constant in own message, and hence the right-hand side of the con-

ditions in Theorem 3 are equal to zero. Thus, for belief-free settings, the following holds:

COROLLARY 4—ep-IC and ep-SCM: Under the maintained assumptions of Theorem

1, , (d, t∗) is ep-IC if and only if for all θi, θ′i and for all θ−i:9

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi

∂θi
(d (θi, θ−i) , θi, θ−i)

]
· (θ′i − θi)≥ 0.

This condition entails joint restrictions on the single-crossing properties of the valuation

functions, and on the monotonicity of the allocation rule. To see this, consider for instance

the special case where (vi)i∈I and d are all everywhere differentiable, and suppose that the

valuation functions also satisfy the ep-SCC in eq. (1). Then, the condition in Corollary 4

holds if and only if ∂d
∂θi

(θ)≥ 0 for all θ ∈Θ and i ∈ I . That is, with ep-SCC, an allocation

rule is ex-post partially implementable if and only if it is increasing. Conversely, if the

allocation rule is decreasing in all types (i.e., ∂d
∂θi

(θ)≤ 0 for all θ ∈Θ and i ∈ I), then (d, t∗)

is ep-IC if and only if the condition in eq. (1) holds with the reversed inequality, which is

exactly what is needed for the conditions in this Corollary to hold. For these reasons, we

refer to this condition as ex-post Single-Crossing and Monotonicity (ep-SCM).

Analogously, in a Bayesian setting with independent types, the same logic implies that

IIC is possible if and only if a suitable interim-SCM condition is satisfied:

COROLLARY 5—IIC with Independent Types: Let B⋄ be a Bayesian environment with

independent types, and let b⋄i ∈ ∆(Θ−i) denote agent i’s beliefs, regardless of his type.

Then, under the maintained assumptions of Theorem 1, an IIC transfer scheme exists if and

only if for all i, and for almost all pairs of θi, θ′i,

Eb⋄i

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi

∂θi
(d (θi, θ−i) , θi, θ−i)

]
· (θ′i − θi)≥ 0.

9This Corollary generalizes known results on single-crossing and monotonicity conditions to our setting, which

allows for not-everywhere differentiable allocation rules.
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Corollaries 4 and 5 provide single-crossing and monotonicity conditions that are ‘stan-

dard’ in the sense that overall they prescribe agents’ marginal valuations and allocations

to increase with each agent’s type (either in the ex-post sense, or ‘in expectation’ with re-

spect to b⋄). Compared to these, the condition in Theorem 3 is more relaxed in the sense

that, if the belief restrictions admit non-trivial belief-based terms, then they may be used to

‘fill’ what the environment lacks in terms of the SCM conditions on the left-hand side, by

relaxing the constraints on the right-hand sides of the inequality.

The belief-based terms can thus be seen as additional tools to shape agents’ incentives,

when standard SCM conditions are not met. The extent to which this is possible depends on

the flexibility of the belief-based terms that are available to the designer, depending on the

belief-restrictions. As we discussed, these are minimal in settings in which the belief sets do

not vary with the type (as in belief-free settings, or in Bayesian settings with independent

types, etc.), but they get larger in other cases, and more so as the belief sets get smaller.

4.3. Comovement of Types and Incentive Compatibility

The condition in Theorem 3 entails a certain discontinuity between settings that satisfy

generalized independence (Def. 2), and those that do not. In the former, the only available

belief-based terms are constant in mi (cf. Corollary 3.1), and hence they cannot be used to

make up for failures of the SCM conditions, since the right-hand side of the condition in

Theorem 3 is zero. But as soon as beliefs vary with agents’ types, the possibility of using

belief-based terms to recover incentive compatibility suddenly expands.

EXAMPLE 3—Comovement of types and belief-based terms: Consider the setting of

Ex. 2, and replace the belief restrictions with the following, (more general) formulation:

Bθi = {b ∈∆(Θj) : Eb (θj) = γ θi
2 +(1−γ)12}, where γ ∈ [0,1] is a fixed parameter, known

to the designer, that captures the degree of comovement between agents’ beliefs and their

types: for γ = 1 we obtain the baseline model from Ex. 2; for γ = 0 instead the belief

restrictions satisfy generalized independence. Since the payoff environment is the same as

in Ex. 2, ep-IC is still impossible. In fact, the canonical transfers in this setting are not B-IC

either, for any γ, and Corollary 3 and Theorem 3 jointly imply that no transfers are B-IC
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when γ = 0. Next, consider the following transfers:

tmod
2 (m) = t∗2 (m)−A

(
γm2

2/2 + (1− γ)m2

2
−m1m2

)
. (7)

Under these belief restrictions, truthful revelation satisfies the first-order conditions, and
∂2Umod

2 (m;θ)
∂2m2

=K − Aγ/2 . Hence, m2 = θ2 is optimal for agent 2 whenever A > 2K/γ,

and hence B-IC is possible for any γ ∈ (0,1]: an arbitrarily small level of comovement is

enough to recover incentive compatibility via the design of a suitable belief-based term. □.

The insight from this example is very general, and goes beyond private values. It ex-

tends to a large class of belief restrictions, regardless of the valuation functions and of the

allocation rule. The following property of the belief restrictions is key:

DEFINITION 3: We say that B admits a responsive moment condition if for each i there

exist Li : Θ−i → R and fi : Θi → R s.t. for all θi and b ∈ Bθi , EbLi (θ−i) = fi (θi) where

fi is cont. diff. and f ′i is bounded away from 0.

If, furthermore, B is such that, for each i and θi, Bθi consists of all the beliefs bi ∈
∆(Θ−i) such that EbiLi (θ−i) = fi (θi), then we say that B is maximal with respect to the

moment condition (Li, fi)i∈I .

In words, B admits a moment condition if, for every i, there exists a function of the oppo-

nents’ types whose expectation given θi is known to the designer (i.e., for each θi, it is the

same for all beliefs in Bθi). If such expectations are strictly monotonic in θi, then we say

that the moment condition is responsive. Moment conditions can be seen as pieces of infor-

mation that the designer may have about agents’ beliefs. In belief-free settings, for instance,

only trivial moment conditions (where all Li and fi are constant) satisfy the restrictions

above, and hence the designer has effectively no information about beliefs. At the oppositve

extreme, in a Bayesian setting, for any Li there is a fi such that Eb⋄iLi (θ−i) = fi (θi) (albeit

with f ′i = 0 if types are independent, not necessarily otherwise). More broadly, the stricter

the belief restrictions, the larger the set of admissible moment conditions, and hence the

more information the designer has about agents’ beliefs. The case when B is maximal with

respect to some (Li, fi)i∈I represents the idea that the specific moment condition is essen-

tially the only information about beliefs that the designer can (or is willing to) rely on.
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PROPOSITION 1: Fix v, and let the belief restrictions admit a responsive moment con-

dition. Then, for any d, there exist transfers t such that (d, t) is B-IC.

Proof: For each agent i, let ti := t∗i − Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. By the smooth-

ness and implied boundedness assumptions on v and d, the left-hand side of the in-

equality in Theorem 3 is bounded, and hence there exists Ai large (resp., small) enough

if fi is increasing (resp., decreasing) such that the inequality in Theorem 3 holds for

βi(m) =−Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. ■

Hence, as long as the belief restrictions admit a responsive moment condition, then any

allocation rule can be made B-IC by some t. (In Ex.3, Li(θ−i) = θj , and fi(θi) =
γθi+(1−γ)

2 ,

which satisfies the condition of the proposition if and only if γ > 0.)

The discontinuity we illustrated with Ex.3 is reminiscent of another well-known discon-

tinuity in the literature, between Bayesian settings with independent and correlated types,

namely Crémer and McLean (1985, 1988) and McAfee and Reny (1992) full-surplus ex-

traction (FSE) results.10 We provide next a novel version of FSE, that highlights more

clearly how the difference between Bayesian and non-Bayesian settings affects the design

of the mechanism.11 Our result is based on the following conditions:

DEFINITION 4: Let B⋄ be a Bayesian setting (i.e., B⋄
θi
= {b⋄θi} for each i and θi).

(i) We say that B⋄ is differentiable if for each i, and for any differentiable G : Θ→R, the

function fi : Θi →R, defined as fi(θi) = Eb⋄θi [G (θi, θ−i)], is differentiable.

(ii) We say that B⋄ satisfies the full rank condition if, for each i, it holds that for any

differentiable gi : Θi → R, there exists a Borel-measurable function κi : Θ−i → R
such that

∫
Θ−i

κi (θ−i)db
⋄
θi
= gi (θi) for all θi.

10In Bayesian settings, the result in Proposition 1 can be strengthened: under suitable restrictions, the results

in McAfee and Reny (1992) imply that not only any allocation rule is implementable, but that this can be done

so that agents’ surplus is almost fully extracted (cf. footnote 3). Chen and Xiong (2013) further showed that this

form of FSE holds generically in the space of Bayesian models. More recent results are provided by Hu et al.

(2021) and Lopomo et al. (2022), who consider alternative approaches to FSE.
11In contrast with the papers in the previous footnote, the sufficient condition we provide for exact FSE next is

stronger than McAfee and Reny (1992)’s, but closer in spirit to Crémer and McLean (1988) full rank condition.
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The next proposition shows that, in Bayesian settings that satisfy these conditions, the

result in Proposition 1 can be strengthened in the sense that not only any allocation rule

can be made IIC, but also the transfers can be chosen so as to match any target for the

equilibrium expected payments:

PROPOSITION 2: Fix v, and let B⋄ be a differentiable Bayesian setting that satisfies the

full rank condition. Then, for any d and for any differentiable t, there exist transfers t′ such

that: (i) (d, t′) is IIC; and (ii) for each i and θi, Eb⋄θi [t′i(θi, θ−i)] = Eb⋄θi [ti(θi, θ−i)].

Proof: First note that if B⋄ is differentiable and satisfies the full rank condition, then there

exist functions (Li, fi)i∈I that satisfy the condition of Prop. 1. Then, for each i, consider

t̂i := t∗i −Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. From the proof of Prop. 1, (d, t̂) is IIC for Ai

large (small) enough if fi is increasing (decreasing). Next, let gi : Θi → R be defined as

gi(θi) :=
∫
Θ−i

[ti(θi, s)− t̂i(θi, s)]db
⋄
θi

and note that, by construction and Def. 4, gi is dif-

ferentiable in θi. Using the full rank condition, let κi : Θ−i →R be s.t.
∫
Θ−i

κi(θ−i)db
⋄
θi
=

gi(θi) for each θi. Then, letting t′i be defined as t′i(θi, θ−i) := t̂i(θi, θ−i)+κi(θ−i), the direct

mechanism (d, t′) is both IIC and such that Eb⋄θi [t′i(θi, θ−i)] = Eb⋄θi [ti(θi, θ−i)]. ■

The ‘anything goes’ result in this proposition stems from the joint combination of the

‘comovement’ of beliefs and payoff-types and of the environment being Bayesian: In a non-

Bayesian setting, such as that in Ex. 3, arbitrary interim payment functions are generally

not possible, due to the limited information about agents’ beliefs. The next proposition

formalizes this insight: if the designer’s information about agents’ beliefs is limited, albeit

still rich enough so as to make any allocation rule implementable, there are restrictions on

the incentive compatible transfers.

PROPOSITION 3: Consider a differentiable (v, d) and a B that is maximal with respect

to a responsive moment condition (Li, fi)i∈I . Then, if (ti)i∈I is a B-IC transfer scheme, for

each i there exist a function Hi :Mi →R such that ti can be decomposed as follows:

ti (m) = t∗i (m) +

∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .

Moreover, there exists a continuous lower bound Ki : Θi → R such that, for any B-IC

transfer scheme, Eb
[∫ θi

θi
(Li (θ−i)− fi (s))Hi (s) ds

]
≥Ki (θi) for all θi and b ∈Bθi .
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For the next proposition, we say that a function g : Θ→R is Li-linear if it can be written

in the form g (θ) = δ1 (θi)Li (θ−i) + δ2 (θi). Additionally, we say that a mechanism (d, t)

is B-individually rational (B-IR) if, for each i and θi, EbU t
i (θi; θi) ≥ 0 for all b ∈ Bθi .

12

Finally, we say that a mechanism extracts the full surplus if the individual rationality con-

straints hold with equality for all i, θi, and b ∈Bθi

PROPOSITION 4: Fix v and d, and let B be maximal with respect to a responsive moment

condition (Li, fi)i∈I . Unless for all i, ∂vi
∂θi

(d (θ) , θ) is Li-linear, no transfers t can extract

the full surplus.

The two results together draw a line between the ‘any d goes’ result for general belief

restrictions (Prop. 1), and the ‘anything goes’ result for Bayesian settings (Prop. 2): while,

in the latter, any interim payment functions are achievable, the extra robustness requirement

in non-Bayesian settings does restrict the possible payments. The next example illustrates

the results of Propositions 1-4 and some of the restrictions on the interim payments:

EXAMPLE 3 (continued): Consider again the setting of Ex. 3, with belief restritions

Bθi = {b ∈∆(Θj) : Eb[θj ] = γ θi
2 +(1−γ)12}. For simplicity, let us consider the case where

γ ∈ [0,1/2]. As we already discussed, the conditions of Prop. 1 hold, and B-IC is attained

by the transfers in eq. (7), as long as A> 2K/γ and for any γ > 0.

Figure 1 plots the range of expected payments (as a function of θi, for any b ∈Bθi) that

are associated with B-IC transfers and the condition that the lowest type pays 0. If, however,

the designer’s model consists of a Bayesian setting that also satisfies the conditions of

Prop. 2, then any expected payments can be induced in an incentive compatible way. For

instance, let B⋄ be such that, for each θi, b⋄θi consists of a mixture of two independent

uniform distributions, over [0, θi] and [0,1], respectively with weights γ and (1− γ). Then,

mimicking the proof of Prop. 2, we can consider for surplus extraction our ‘target’ transfers

to be ti(θ) = −vi(d(θ), θ), which would attain FSE, and obtain the expected difference

gi(θi) =
∫
Θj

(
ti − t̂i

)
dbθi , where t̂i is a suitable IIC transfer.

12Recall that, for any b ∈∆(Θ−i), we defined EbU t
i (mi;θi) :=

∫
Θ−i

U t
i (mi, θ−i;θi, θ−i)db. Also, in this

section we set the outside option to 0 for simplicity, but the extension to type-dependent outside options is easy.



27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

0.20.2 0.40.4 0.60.6 0.80.8 11

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

00

partial impl.

0.20.2 0.40.4 0.60.6 0.80.8 11

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

00

partial impl.

FIGURE 1.—Possible Expected Payments to the Agents in Ex. 3: B-IC under ti (0, θ−i) ≡ 0. The thick

black line, in both figures, is the expected canonical transfer to each agent (feasible for agent 1 but infeasible for

agent 2). The gray area represents the possible interim payments under partial implementation (resulting from

possibly different transfer schemes, with the restriction that the lowest type pays zero).

For agent 1, the canonical transfers are IIC , and hence they can be used in the role of

t̂1. The integral equation
∫
Θ2

κ1 (θ2)dbθ1 =−K
[
γ θ21

2 + (1− γ)θ12

]
solved for κ1(·) gives

κ1(θ2) =
K(1+γ)

γ [θ2(2 + γ) + (1− γ)] if θ2 ∈ [0, γ] and κ1(θ2) = 0 otherwise. (See Ap-

pendix B for the solution of this class of integral equations.) For agent 2, we can take

t̂2(θ) = t∗2 (θ) − A
(
γθ22/2+(1−γ)θ2

2 − θ1θ2

)
from eq. (7), which is IIC for A > 2K/γ.

The integral equation
∫
Θ1

κ2 (θ1)dbθ2 = θ22
2

[
K(1 + γ)− γA

2

]
+ K(1 − γ)θ22 solved for

κ2(·) gives κ2(θ1) = − (1−γ)
γ

[
θ1

(2+γ)
γ

(
K(1 + γ)− γA

2

)
+ (1− γ)K

]
if θ1 ∈ [0, γ] and

κ2(θ1) = 0 otherwise. The resulting transfers, t′i = t̂i + κi, preserve IIC and at the same

time extract all the surplus from both agents. Moreover, any other differentiable ti pay-

ments can be matched by constructing transfers this way. □

Hence, information rents remain, even within models where agents’ beliefs might play a

role in facilitating the implementation task. If the belief-restrictions are not Bayesian, even

if any d can be implemented under the condition of Proposition 1, there may still be bounds

to the surplus that can be extracted. The size of the information rents depends on the joint

properties of the allocation rule, agents’ preferences, and the belief restrictions, and they

get get larger as the robustness requirement strenghtens (i.e., as the belief sets get larger).
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To formalize these statements, for any (v, d), and for any belief restrictions B, let F (B)
denote the set of transfer schemes that are both B-IC and B-individually rational, and let

V (B) denote the set of all triplets (i, θi, b) such that i ∈ I , θi ∈Θi and b ∈Bθi . Then, define:

τ(B) := inf
t∈F (B)

sup
(i,θi,b)∈V(B)

EbU t
i (θi; θi)

if F (B) is non-empty, and τ(B) :=∞ otherwise.

First note that, with this notation, FSE obtains if and only if there exists t ∈ F (B) such

that the constraint for B-IR holds with equality for all types of all agents, i.e. if τ(B) =
0. If ∞ > τ(B) > 0, in contrast, in each incentive compatible and individually rational

mechanism there is at least some type that enjoys strictly positive rents. This bound to the

designer’s ability to extract surplus, however, decreases monotonically as belief restrictions

get finer. At the extreme, if B is a Bayesian setting with correlated types, then FSE obtains.

PROPOSITION 5: For any (v, d), and for any B: B′ ⊆ B implies τ(B′) ≤ τ(B). More-

over, if τ(BBF )> 0, then there exist B and B′ such that:13 (i) B admits a responsive moment

condition (Def. 3) and is such that 0< τ(B)<∞; (ii) B′ ⊂B and is such that τ(B′) = 0.

The weak monotonicity of τ(·) with respect to set inclusion follows directly from the

definition of B-IC. The rest of the proposition states that – unless the environment is trivial

– there always exist belief restrictions B in which FSE is not possible, despite B already

granting maximal flexibility in implementing any allocation rule via belief-based terms.

FSE can be achieved, but only by relying on extra information B′ ⊂B about beliefs. Hence,

in essentially any environment beliefs can play a meaningful role to expand the possibility

of implementation, without entailing FSE.

5. DISCUSSION

5.1. Implications of Theorem 1

5.1.1. On the Richness of Belief-based terms in Bayesian Settings

As we mentioned in Section 3.2.2, in a Bayesian setting, B⋄, for any i ∈ I and for

any Gi : M → R that is Lebesgue-integrable with respect to mi, the function fi (θi) :=

13Note that τ(BBF ) = 0 only holds in trivial environments, in which each vi is constant in own type.
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Eb⋄θiGi (θi, θ−i) is uniquely pinned down by agent i’s beliefs. Hence, letting βi (m) :=∫mi

θi
Gi (s,m−i)ds−

∫mi

θi
fi (s)ds, we obtain a viable belief-based term, since βi thus de-

fined satisfies condition (5) in Theorem 1. The results in the previous section showed how

this richness, and the associated freedom to choose such functions, can be used to obtain

full-surplus extraction. Other results in the literature have also exploited this richness, to

obtain various results (cf. footnote 2). We will return to this point throughout this Section.

5.1.2. On Bayesian Settings with Independent Types

The result in point 1 of Corollary 2 formalizes why with independent types it is with no

essential loss of generality to study incentive compatibility as if there were a single agent.

When this condition does not hold, however, the heterogeneity of beliefs across a player’s

types may indeed expand the set of feasible interim payments and implementable allocation

rules, and hence the reduction to a single-agent setting is not without loss.

Note, however, that even with independence, and notwithstanding the payoff-equivalence

of all IIC transfers, there may still be a value in characterizing the full set, beyond the

canonical transfers. That is if the designer has other objectives, beyond mere incentive

compatibility. In these cases, the single-agent approach does entail a loss of generality,

even with independent types.

EXAMPLE 4—Independence and Multiplicity: Consider the environment from Ex. 1,

but now assume that types are i.i.d. draws from the uniform distribution over [0,1]. Then,

Corollary 2 implies that IIC is possible if and only if the VCG transfers are IIC. In turn,

Corollary 5 ensures that this is the case if and only if γ ≥−1.

Next, suppose that γ = 3/2, and consider the following transfers:

tfulli = tV CG
i + αi

(
mj −

1

2

)
(1 + γ)mi

With γ = 3/2, the VCG transfers are IIC. Furthermore, since Eb[θj |θi] = 1/2 for all θi,

these modified transfers satisfy both conditions in Theorem 2 for any αi. While this rich-

ness of transfers is redundant from the viewpoint of IIC alone, it may still be useful for

other purposes. For instance, if one also cares about unique implementation, with γ = 3/2

the VCG transfers induce too strong strategic externalities, and hence multiplicity of equi-

libria. The results from Ollár and Penta (2017) ensure that truthful revelation is the only
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rationalizable strategy (and, hence, also the unique equilibrium) for αi ∈ (1/2,5/2). In fact,

for αi = γ, truthful revelation is an interim dominant strategy. □

5.1.3. On Generalized Independence

Corollary 3 generalizes Theorem 1 in Ollár and Penta (2023), which only focused on

the Bid-restrictions (i.e., under common belief in identicality), and it sheds light on some

influential results in Lopomo et al. (2021) and in Jehiel et al. (2012)).

Lopomo et al. (2021) showed that, under standard single-crossing and monotonicity as-

sumptions, a “full dimensionality” condition on the overlap of the belief sets implies that

there is no gap between the possibility of B-IC and ep-IC. First note that our notion of gen-

eralized independence is weaker than the analogous condition in Lopomo et al. (2022), as

it does not impose any form of full-dimensionality on the overlap of the belief sets. Further-

more, under generalized independence, B-IC is possible if and only if it is achieved by the

canonical transfers (Corollary 3). Under standard ex-post SCM conditions, the canonical

transfers are ep-IC (Corollary 4), and hence our results also imply that– under generalized

independence – there is no gap between the possibility of ep-IC and B-IC. But without

ep-SCC, as in our general setting, the canonical transfers may be B-IC without necessar-

ily being ep-IC.14 Then, it would not be the case that B-IC and ep-IC coincide, although

revenue equivalence would still hold (Corollary 3.2).

5.2. Equilibrium Payoffs: An Envelope Formulation

Theorem 3 implies the following characterization of the equilibrium payoffs of B-IC

mechanisms:

THEOREM 4—Payoff Characterization: Fix belief restrictions B and allocation rule d.

For each i, let Di ⊆RΘ denote the set of all belief-based terms that satisfy the conditions of

Theorem 3. Then, (Ui)i∈I ∈×i∈IRΘ is a feasible payoff-function in the truthful equilibrium

of a B-IC mechanism if and only if, for each i, there exists βi ∈Di such that

Ui (θi, θ−i; θ) =

∫ θi

θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i)ds+ βi (θi, θ−i) . (8)

14Ollár and Penta (2023) provide an example of this possibility within the context of the Bid-restrictions.
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This formulation of the equilibrium payoffs resembles well-known envelope conditions

that characterize the equilibrium payoffs of incentive compatible transfers. In fact, Theorem

4 generalizes several such results along different dimensions. It also highlights the limita-

tions of pursuing an evenlope approach either when beliefs do not fall within certain special

cases, or when the designer has other objectives beyond mere incentive compatibility.

To see this, first suppose that the environment is belief-free. Then, by Corollary 1, the

set Di only contains βi : Θ→ R that are constant in mi, and hence (8) boils down to the

standard envelope condition (3) in Milgrom and Segal (2002). More generally, for belief-

restrictions that satisfy generalized independence (cf. Def. 2), and letting b ∈ ∩θi∈Θi
Bθi ,

then all βi ∈Di are such that Eb(βi) is constant in mi (Corollary 3), and hence also in this

case the formula in (8) delivers the standard ‘integral condition’ for the interim expected

payoffs, Eb(Ui), here generalized to accommodate both the possibility of interdependent

values as well as non-Bayesian settings with generalized independence.

Thus, when Eb(βi) is constant in mi for all βi ∈ Di, the interim expected equilibrium

payoffs under incentive compatibility are effectively pinned down, up to a constant in own

message, and hence this formula can be used to obtain the incentive compatible transfers,

by inverting the integral condition and using the fact that Ui(m,θ) = vi(d(m), θ) + ti(m).

But when the set Di is richer than that, then there is a non-trivial multiplicity of payoff

functions, each with its own envelope condition. In these cases, which include for instance

Bayesian settings with correlated types, the payoff function is only determined once the

transfers are fixed, and hence the envelope formula cannot be used to recover the incentive

compatible transfers. The multiplicity of transfers determines a family of envelope condi-

tions, for distinct belief-dependent terms in Di.

Finally, even when the envelope approach can be used to recover the incentive compati-

ble transfers (as under generalized independence), it still overlooks the richness of the set

of incentive compatible transfers, which may be useful for other purposes beyond incen-

tive compatibility. For instance, in Bayesian settings with independent types, the expected

payments for all IIC transfers only differ up to a constant in own message. Such transfers,

however, may induce different payoffs at non-equilibrium profiles, and hence exhibit dif-

ferent properties with respect to other objectives, such as uniqueness, budget balance, etc.

(see, e.g., Ex. 4 above). In this sense, also in such settings the envelope approach is more

limited than the first-order approach that we pursue in this paper.
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6. RELATED LITERATURE

This paper contributes to the literature on robust mechanism design, particularly follow-

ing the approach in Bergemann and Morris (2005), that is to achieve implementation of a

given allocation rule for a large set of beliefs. The first wave of this literature focused on

belief-free environments. More specifically, Bergemann and Morris (2005, 2009a,b) study

belief-free implementation in static settings, respectively in the partial, full and virtual im-

plementation sense. The belief-free approach has been extended to dynamic settings by

Müller (2016) and Penta (2015). Penta (2015) considers environments in which agents

may obtain information over time, and applies a dynamic version of rationalizability based

on a backward induction logic (cf. Penta (2011) and Catonini and Penta (2022)). Müller

(2016) instead studies virtual implementation via dynamic mechanisms, in a static belief-

free environment, using a stronger version of rationalizability with forward induction.

Belief restrictions as a way to introduce intermediate notions of robustness (as well as

unify also the belief-free and Bayesian benchmarks) were first introduced in Ollár and

Penta (2017), and some special cases are analyzed in Ollár and Penta (2022, 2023, 2024b),

with the objective of studying how information about beliefs could be used to obtain unique

implementations in settings in which incentive compatibility followed directly from stan-

dard assumptions. In this paper, in contrast, we focused on the more fundamental question

of how beliefs can be used for the very establishment of incentive compatibility.

From a methodological viewpoint, we pursued a generalization of the classical first-

order approach that identifies necessary conditions for local incentive compatibility con-

straints (cf. Rogerson (1985); Jewitt (1988)), and then studies sufficient conditions for

global optimality. This methodological shift is necessary to account for the general belief

restrictions we consider, and particularly for those that do not satisfy ‘generalized inde-

pendence’, where the envelope formula cannot be used. But it also brings to the forefront

a hiterto neglacted richness of incentive compatible transfers also when the conditions for

the envelope theorems hold (including, as discussed, Bayesian settings with independent

types). Carvajal and Ely (2013) also studied the design of incentive compatible mecha-

nisms in settings in which the envelope formula cannot be used, due to non-convexity or

non-differentiability of the valuations, but only within standard Bayesian settings. Related
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ways of modeling robustness have been explored instead by He and Li (2022), Lopomo

et al. (2021, 2022), Gagnon-Bartsch et al. (2021), and Gagnon-Bartsch and Rosato (2023).

Several papers have used special cases of belief restrictions to model robustness with

respect to local perturbations around a given Bayesian belief-setting. For instance, Jehiel

et al. (2012) show that, under certain restrictions on preferences, minimal notions of robust-

ness are as demanding as the belief-free case. A similar result is proven in Lopomo et al.

(2021), for overlapping beliefs, and in Lopomo et al. (2022), within an auction setting. As

discussed, these results are in line with those we obtain under generalized independence

(cf. Corollary 3). The exact connections between our results and those of these papers are

discussed in Sections 3 and 5. In terms of the framework, the belief-restrictions that we

consider encompass the belief sets studied by the above papers. In contrast to those papers,

we develop a first-order approach and also provide several possibility results for transfer

design under various degrees of robustness. Lopomo et al. (2021), on the other hand, also

consider more general preferences, which are beyond the scope of our work (notably, their

model allows for preferences that are not necessarily quasilinear in transfers, as well as the

possibility of incomplete preferences due to Knightian uncertainty).

Several alternative approaches to robustness have been put forward. For instance, Börg-

ers and Smith (2012, 2014), focus on the role of eliciting beliefs to weakly implement a

correspondence in a belief-free setting. Börgers and Li (2019) provide a more systematic

analysis of implementation relying on first-order beliefs. Other approaches model robust-

ness with respect to certain behavioral concerns directly in the implementation concept.

These include criteria such as credibility of the designer (Akbarpour and Li (2020)), a

behavioral notion of strong strategy proofness (Li (2017)), safety considerations with re-

spect to model misspecification (Gavan and Penta (2023)), convergence of best response

dynamics (Mathevet (2010); Mathevet and Taneva (2013); Healy and Mathevet (2012), and

Sandholm (2002, 2005, 2007)), etc.

Yet another approach is based on maxmin criteria, as pursued for example by Chung and

Ely (2007); Chassang (2013); Carroll (2015); Yamashita (2015); He and Li (2022). The

aim here is typically to explore whether ‘natural’ mechanisms can be justified as worst-case

optimal, within a suitable robustness set (see Carroll (2019) for a survey of this literature).

In this paper, in contrast, we fix an allocation rule and require implementation not only for
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the worst-case beliefs, but for all beliefs in the robustness set. In this sense, our approach is

closer to the original belief-free approach of Bergemann and Morris (2005, 2009a,b).

7. CONCLUSIONS

We studied incentive compatibility in a general framework for robust mechanism de-

sign, that can accommodate various degrees of robustness with respect to agents’ beliefs,

and which includes as special cases both belief-free (e.g., Bergemann and Morris (2005,

2009a,b)) and standard Bayesian settings. For general belief restrictions, we characterized

the set of incentive compatible direct mechanisms in general environments with interdepen-

dent values. The necessary conditions that we identified, based on a first-order approach,

provide a unified view of several known results, as well as novel ones, including a robust

version of the revenue equivalence theorem that holds under a notion of generalized inde-

pendence that also applies to non-Bayesian settings.

From a methodological perspective, we showed that, in spite of its simplicity, a suit-

able generalization of the classical first-order approach (e.g., Laffont and Maskin (1980);

Rogerson (1985); Jewitt (1988), etc.), allows a wealth of novel results: (i) on the one hand,

it identifies the class of incentive compatible transfers in settings which cannot be handled

with the standard envelope approach (such as in Bayesian settings with correlated types,

or with general belief restrictions); (ii) on the other hand, even in settings where the the

equilibrium payoffs are pinned down by the envelope approach (e.g., under generalized

independence – cf. Corollary 3 and Theorem 4) , it identifies the richness of incentive com-

patible transfers that may serve purposes beyond incentive compatibility (such as budget

balance (d’Aspremont and Gérard-Varet, 1979), stability (Mathevet (2010); Mathevet and

Taneva (2013); Healy and Mathevet (2012), and Sandholm (2002, 2005, 2007)), uniqueness

(Ollár and Penta, 2017, 2022, 2023), etc.), which has hitherto escaped a unified, systematic

analysis. Both of these features allow several directions for possible future research.

Our main results inform the design of belief-based terms, in pursuit of various objectives

in mechanism design, including attaining incentive compatibility in environments that vi-

olate standard single-crossing and monotonicity conditions. Outside of environments with

generalized independence, we showed that minimal information about agents’ beliefs may

suffice to implement any allocation rule. Yet, if the setting is non-Bayesian, information

rents are generally possible, and they get larger the less information the designer has about
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agents’ beliefs. Our belief restrictions may thus capture a meaningful notion of ‘comove-

ment’ of beliefs and types that is useful for implementation, but without incurring into

the pitfalls of ‘full-surplus extraction’ results (cf. Crémer and McLean, 1985, 1988). This

framework may thus favor mechanism design’s reappropriation of environments with non-

exclusive information, in which distilling intuitive and reliable economic intuition has long

appeared elusive, within the prevailing paradigm. We believe that this is a valuable feature

of our framework, which enables exploring several novel questions.
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Appendix

APPENDIX A: PROOFS

Proof of Theorem 1. Fix an agent i. Firts, we show that t∗i (m) is well-defined since the al-

location rule d is p.diff.15 Since vi is twice continuously differentiable, ∂vi
∂θi

is continuously

differentiable over X ×Θ. Now, for fixed m−i, ∂vi
∂θi

(d (·,m−i) , ·,m−i) – a function from

Mi to R – is a composite function of d and ∂vi
∂θi

and since d is piecewise differentiable over

Θi, we have that for all m−i, ∂vi
∂θi

(d (·,m−i) , ·,m−i), a function from Mi to R, is piecewise

continuous, therefore integrable, over Mi.

CLAIM 1: t∗i is p.diff over M .

Proof of Claim 1: Recall that t∗i (m) =−vi (d (m) ,m)+
∫mi

θi
∂vi
∂θi

(d (s,m−i) , s,m−i)ds.

Since d is p.diff, restricted to its pieces, ∂vi
∂θi

(d(·), ·) :M →R is continuously differentiable

over the same pieces as vi is twice cont.diff. Therefore
∫mi ∂vi

∂θi
is p.diff over M , and thus

t∗i is p.diff over M .

Now, consider a piecewise differentiable B-IC ti, and we let βi := ti−t∗i . Then, by Claim

1, βi is p.diff over M . Next, since ti is B-IC, for all θi, b ∈ Bθi , we have that, when the

derivative exists,
[
∂iEb

(
vi (d (mi, θ−i) , θ) + ti (mi, θ−i)

)] ∣∣
mi=θi

= 0. Since the canonical

transfer t∗ by its construction satisfies the ex-post FOC, the above statement holds for t∗i
too. Now, from this, for ti − t∗i , for all θi and b ∈ Bθi for which both derivatives exist,

15For example, consider two agents. The single item allocation rule given by the allocation probabilities

d1 (θ) = 1 − d2 (θ) = {1 if θ1 > θ2; 1/2 if θ1 = θ2; 0 otherwise} satisfies our definition of piecewise differen-

tiability.
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we have
[
∂iEb

(
ti − t∗i

)(
mi

)] ∣∣
mi=θi

= 0. Next, we use the following claim to extend this

result to all differentiability points of Ebβi, beyond the joint differenttiability points of Ebti

and Ebt∗i . □

CLAIM 2: For a p.diff f :M →R and b ∈∆(Θ−i) with p.diff cdf, Ebf :Mi →R is p.diff.

Proof of Claim 2: Consider b’s cdf. which has finitely many pieces: Sb
1, . . . , S

b
K . Write

Ebf (mi) =
∫
Θ−i

f (mi, θ−i)db =
∑K

j=1

∫
int Sb

j
f (mi, θ−i)db. For each j, let Aj (mi) :=∫

int Sb
j
f (mi, θ−i)db. Since f is p.diff over M , it is p.diff over each Sb

j and it has

finitely many pieces of Sb
j : Sb

j,1, . . . , S
b
j,l, . . . , S

b
j,Lj

. Rewrite Aj such that Aj (mi) =∑Lj

l=1

∫
int Sb

j,l
f (mi, θ−i)db, and note that f is continuouse over int Sb

jl. Therefore Aj :

Mi → R is p.diff over Mi for each j. Since Ebf is a sum of K such functions, it is p.diff

over Mi (that is, it has at most finitely many jumps). □

Note that by Claim 2, if b has a p.diff cdf, then Ebvi is p.diff and thus Ebt∗i is p.diff,

which also means that Eb (ti − t∗i ) is p.diff, moreover, it is differentiable in the joint differ-

entiability points of Ebti and Ebt∗i , that is, over Mi with the exception of at most finitely

many points. Therefore, if Ebβi (·) has further differentiability points, then the expected

value condition must extend to these as well, and hence the Theorem follows. ■

REMARK. As this is clear from the last part of the proof above, for a belief b ∈Bθi which

has a p.diff cdf,16 Ebβi is almost everywhere differentiable on Mi. Thus the expected value

condition of Theorem 1, for typically considered belief-restrictions, implies substantial re-

strictions on what form the function βi can take.

Proof of Corollary 1. By Theorem 1, for every b ∈∆(Θ−i), at each point of differentia-

bility, ∂iEbβi (mi, θ−i) = 0. In particular, this holds for all point-beliefs, and thus for all

fixed m−i, in all points of differentiability of βi (·,m−i), we have ∂iβi (mi, θ−i) = 0. Thus

for each fixed m−i, the function βi (·,m−i) can jump at most finitely many times, and on

its pieces, the derivative is 0, therefore on its pieces, it must be constant. However, if it

had a jumping point, then by the smoothness properties of vi, it would violate incentive

compatibility. Therefore βi must be constant everywhere in mi. ■

16Note that for example, discrete distributions, full support continuous distributions, as well as their convex

combinations have piecewise differentiable cdfs and are Borel-measures.
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Proof of Corollary 2. Let B⋄ be a Bayesian environment with independent types, and note

that by independence the belief does not change with the type, so let b⋄i ∈∆(Θ−i) denote

agent i’s beliefs, regardless of his type. First, recall that Eb⋄i [βi (·, θ−i)] is a function over Mi

that can jump at most finitely many times. In its points of differentiability, the derivative is

0, thus the function is constant. If the function itself would jump, it would violate incentive

compatibility, hence it is the same constant κi over Mi, which proves (1) of this corollary.

By the characterization in Theorem 1, (2) and (3) follow. ■

Proof of Corollary 3. The proof of Corollary 2 applies to belief pi ∈ ∩θi∈Θi
∆(Θ−i). ■

Proof of Theorem 2. By the assumed differentiability, βi is also twice continuously differ-

entiable and as the functions have compact domains, by the Leibniz rule, (1) obtains from

Theorem 1. Further, under ti, reporting θi is locally optimal and thus (2) obtains from the

decomposition of the payoff function into U∗
i and βi. In the other direction, if (2) holds

strictly for all mi, then the expected payoff function is strictly concave, and by the decom-

position and (1), the FOC holds at θi, hence ti is B-IC. ■

Characterization of Belief-based Terms in Ex. 2. CLAIM: Consider the belief-restrictions

Bγ ; for all i ∈ {1,2} and for all θi, B
γ
θi
=
{
b ∈∆(θj) : Ebθj = γiθi

}
. In the special case

of γi = 1/2, this is the setting considered in Ex. 2. Recall that θi ∈ [0,1] and we assume

that 0< γi < 1. Then a function βi :M →R which is differentiable in mi is a belief-based

term if and only if for some real functions Hi on M and τi on M−i, it takes the form

βi (m) =
∫mi

0

(
s− mj

γi

)
Hi (s)ds+ τi (m−i).

Proof of the Claim. First, if βi is of the given form, then ∂iβi (mi,mj) =
(
mi −

mj

γi

)
Hi (mi)

which for all θi, at the truthtelling profile for all beliefs in Bθi satisfies the expected value

condition, thus it is a belief-based term. Second, in the other direction, if βi is a differen-

tiable belief-based term, then by the point-beliefs in Bγ
θi

, we have that (i) ∂iβi (θi, γiθi) = 0

for all θi. Next, we show that ∂iβi : M → R is linear in mj . This is so, as Bγ
θi

contains

beliefs that place non-zero probabilities on two points x and y which give a splitting

of γiθi: there is a probability α such that αx + (1− α)y = γiθi. Note that such α ex-

ists for any points that are such that x ≤ γiθi ≤ y. Each of these beliefs imply, by the

expected value condition, that α∂iβi (θi, x) + (1− α)∂iβi (θi, y) = 0 as well. Hence for

any fixed mi, ∂iβi is linear in mj . Hence, there are functions f1 and f2 onMi for which

∂iβi (m) = f1 (mi)mj + f2 (mi). At the same time, as by (i) above, these functions must
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be such that for all θi, f1 (θi)γiθi+ f2 (θi) = 0. From this and by change of notation for the

functions, βi (m) has the form as claimed. Finally, the initial condition of "0 type pays 0"

of this example implies that τi ≡ 0 and so βi takes the form as stated in Ex. 2. □

Proof of Theorem 3. The payoffs Ui = vi+t∗i +βi, by using (3) and adding and subtracting∫ θi
mi

∂vi
∂θi

(d (s,m−i) s,m−i)ds+ βi (θi,m−i), can be rewritten, at the profile m−i = θ−i, as

Ui (mi, θ−i; θ) =
∫ θi
θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i) ds+ βi (θ)

−
∫ θi
mi

(
∂vi
∂θi

(d (s, θ−i) , s, θ−i)−
∂vi
∂θi

(d (mi, θ−i) , s, θ−i)

)
︸ ︷︷ ︸

=:SCi(mi,s,θ−i)

ds+ βi (mi, θ−i)− βi (θ) .

The first two terms do not depend on the report mi, and the latter three terms give 0 if

mi = θi. Thus mi = θi is best response if and only if the expected gain from misreport,

−Eb
∫ θi
mi

SCi (mi, s, θ−i)ds+Ebβi (mi)−Ebβi (θi), is nonpositive; which is the condition

from the inequality of this theorem. ■

Proof of Proposition 3. Fix agent i. It can be shown, by generalizing the Claim used in

the Characterization of Belief-based terms in Ex. 2., that if B is maximal with respect to

(Li, fi)i∈I , then any belief-based term βi satisfies the necessary condition of Theorem 1

if and only if ∂iβi = (Li (m−i)− fi (mi))Hi (mi), where Hi is a real function over Mi.

Then, if ti is B-IC, by Theorem 1, it can be written as,

ti (m) = t∗i (m) +

∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .

Next, we need to check when the SOC at the truthful profile holds.17 To this end, we need

to study when it is the case that for all bθi ∈Bθi ,

∂2iiE
bθiU∗

i (mi, θ−i, θ)

∣∣∣∣
mi=θi

+ ∂2iiE
bθiβi (mi, θ−i)

∣∣∣∣
mi=θi

≤ 0

−Ebθi

(
∂2vi (d (θ) , θ)

∂x∂θi

∂d (θ)

∂θi

)
≤ f ′i (θi)Hi (θi)

17The canonical externalities are ∂2
ijU

∗
i (m,θ) =

(
∂2vi(θ,d(m))

∂2x
∂d
∂θj

− ∂2vi(m,d(m))
∂x∂θj

− ∂2vi(m,d(m))
∂2x

∂d
∂θj

)
∂d
∂θi

+(
∂vi(θ,d(m))

∂x − ∂vi(m,d(m))
∂x

)
∂2d

∂θj∂θi
.
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Let us set

SCM i (θi) := sup
bθi∈Bθi

Ebθi

(
−∂2vi (d (θ) , θ)

∂x∂θi

∂d (θ)

∂θi

)
.

With this notation, if f ′i > 0, then SCM i/f
′
i is a lower bound on Hi and if f ′i < 0,

then SCM i/f
′
i is an upper bound on Hi. Next, consider the modification of the interim

payments and notice that the order of integration can be exchanged:

Ebθiβi (θ) = Ebθi

∫ θi

θi

(Li (θ−i)− fi (s))Hi (s) ds

=

∫ θi

θi

(
EbθiLi (θ−i)− fi (s)

)
Hi (s) ds=

∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

First, if f ′i > 0, then the weights on Hi are positive, and the lower bound on Hi gives a

lower bound on the second term. Therefore Ebθiβi (θ)≥
∫ θi
θi

(fi (θi)− fi (s)) [SCM i/f
′
i ] (s) ds.

Second, if f ′i < 0, then the upper bound on Hi gives a lower bound on the second term,

hence, in this case too, the same inequality holds. ■

Proof of Proposition 4. By way of contradiction, assume that t is B-IC and extracts the sur-

plus. By Theorem 1, ti can be written as ti (m) = t∗i (m)+
∫mi

θi
(Li (m−i)− fi (s))Hi (s) ds+

τi (m−i). Moreover, for all θi and b ∈Bθi , EbU t
i (θ; θ) = 0. Using the formula in 3, and the

calculation for Ebθi
∫ θi
θi

(Li (θ−i)− fi (s))Hi (s) ds =
∫ θi
θi

(fi (θi)− fi (s))Hi (s) ds as in

the Proof of Prop. 3, these impy that

Eb

(∫ θi

θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds+ τi (θ−i)

)
=−

∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

Note that the RHS of this expression depends on θi but not on b, therefore the LHS must

be the same for all b ∈Bθi . By B being maximal wrt (Li, fi)i∈I , by the generalization of the

proof of the Characterization of the Belief Based Terms in Ex. 2, we have on the left that the

function
∫ θi
θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds + τi (θ−i) must take a form which is Li-linear. This

function is differentiable in θi and so, also its derivative ∂vi
∂θi

(d (θ) , θ) must be Li-linear. In

summary, unless ∂vi
∂θi

(d (θ) , θ) is Li-linear, B-IC and FSE lead to a contradiction. ■

Proof of Proposition 5. Fix (v, d). The first inequality follows from the relaxed robust-

ness requirement. The rest of the proposition requires the construction of the two belief-
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restrictions B and B′. Note that for each i, there is a function Li : M−i → R such that
∂vi
∂θi

(d (θ) , θ) is not Li-linear. For each i fix γi ∈ (0,1), and let the belief-restrictions B
be maximal with respect to the responsive moment condition (Li, γiθi)i∈I .Prop. 1 implies

that B-IC transfers exist, thus F (B) is non-empty and ∞> τ (B). Yet, as a consequence of

Prop. 4, FSE is not possible, that is, τ (B)> 0. Next, let B′ be s.t. B′
θi
= {pθi} and s.t. (i) pθi

has a pdf that is continuouse and non-zero over the support ×j ̸=i

[
θj , θj + (θi − θi) (lj/li)

]
,

where for each i, li := θi − θi, and (ii) for all θi, EpθiLi (θ−i) = γiθi. (Note that for each

θi, matching the fixed first moment is possible.) For B′ thus constructed, the construction

in Ex. 3 shows that a t exists which ensured FSE and is B-IC and hence B′-IC as well. ■

Proof of Theorem 4. Consider the payoff equation of the Proof of Theorem 3. By setting

mi = θi, the theorem follows. ■

APPENDIX B: ON EXAMPLE 3: BELIEFS AND THE INVERSE PROBLEM

Consider an agent with type θi and beliefs given such that θj |θi = γνθi + (1− γ)ηij

where νθi is U [0, θi] and, independently of this, ηij is U [0,1]. Let us examine the solv-

ability of
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi). (For a thorough mathematical treatment on the

solvability of integral equations we recommend the book Hochstadt (1989).) The pdf of the

conditional random variable is such that:

if 1− γ > γθi,

p (θj |θi) =



1
γθi(1−γ)θj if θj ∈ (0, γθi)

1
1−γ if θj ∈ [γθi,1− γ)

1−γ+γθi−θj
γθi(1−γ) if θj ∈ [1− γ,1− γ + γθi)

0 otherwise

and if 1− γ < γθi
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p (θj |θi) =



1
(1−γ)γθi

θj if θj ∈ (0,1− γ)

1
γθi

if θj ∈ [1− γ, γθi)

1−γ+γθi−θj
(1−γ)γθi

if θj ∈ [γθi,1− γ + γθi)

0 otherwise

.

There are two cases to be considered: either γ ≤ 1/2 or γ > 1/2.

Part 1: If γ ≤ 1/2, then for all θi, 1 − γ > γθi. Let us look for solutions of the

form such that αi (θj) is 0 outside of θj ∈ [0, γ]. In this case, since θi <
1−γ
γ for all θi,∫ 1

0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

∫ γθi

0
α (θj)

θj
(1− γ)γθi

dθj +

∫ γ

γθi

α (θj)
1

1− γ
dθj = f (θi) .

Starting from this expression, in the following three lines, (1) we change variable to s :=

γθi and differentiate and simplify, (2) reorganize and differentiate for a second time, (3)

reorganize:∫ s

0
α (θj)

−θj (1− γ)

(1− γ)2 s2
dθj = f ′

(
s

γ

)
1

γ

α (s) s=− (1− γ)

(
f ′′
(
s

γ

)
s2

γ
+ 2f ′

(
s

γ

)
s

γ

)
α (s) =− (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
,

to, finally, introduce notation Lγ (s) := f ′′
(
s
γ

)
s
γ + 2f ′

(
s
γ

)
1
γ and change variables to get

the solution which is: for all θj ∈ [0, γ], α (θj) =− (1− γ)Lγ (θj), and 0 otherwise.18

Part 2: If γ > 1/2, then there are two cases to be considered: either 1 − γ > γθi or

1− γ ≤ γθi. Eitherways, let us look for solutions of the form such that αi (θj) is 0 outside

of [γ,1].

Case (A): 1− γ > γθi. In this case,
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

18Note that Lγ (s) =
(
f
(

s
γ

)
s
)′′

.
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∫ 1−γ+γθi

γ

1− γ + γθi − θj
(1− γ)γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and differentiate,

differentiate for a second time,

0 +

∫ 1−γ+s

γ
α (θj) dθj = (1− γ)

(
f

(
s

γ

)
s

)′

α (1− γ + s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
,

to, finally, change variables, use the notation Lγ and get the solution which is: for all θj ∈
[γ,1], α (θj) = (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

Case (B): 1− γ ≤ γθi. In this case,
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

∫ γθi

γ

1

γθi
α (θj)dθj +

∫ 1−γ+γθi

γθi

1− γ + γθi − θj
(1− γ)γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and differentiate,

differentiate for a second time,

α (s) + 0− α (s) +

∫ 1−γ+s

s

1

1− γ
α (θj) dθj =

(
f

(
s

γ

)
s

)′

α (1− γ + s)− α (s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
.

Finally, change variables, use the notation Lγ , and the assumption on the format such

that α (s) is 0 for all s < γ and get the solution which is: for all θj ∈ [γ,1], α (θj) =

0 + (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

In summary, in Part 2, differentiating the integral equation twice implies a unique can-

didate solution since the solution suggested for Case (B) is the same as in Case (A). The

candidate solution, when checked against the domain restrictions, works indeed and hence

is the solution of the integral equation. □
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